
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on 76004.3437@compuserve.com

or write/fax us at The Delphi Magazine

FileMode Failure

QBased on your series of file
handling articles, I am trying

to import data from an old DOS
package we use into Paradox files.
The problem is locking. I specify

FileMode := fmOpenReadWrite +
 fmShareDenyNone

so it can import a snapshot even if
other users are using the package.
However, Delphi 2’s Reset throws
an exception with I/O error 32
(ERROR_SHARING_VIOLATION). Am I
doing something wrong?

ANo. Delphi 2 has a bug where
all the sharing bits of

FileMode are stripped off and ig-
nored. 2.01 also has the same prob-
lem, however there is a patch
available, which is included on this
month’s disk as SYSTEM.ZIP in the
CLINIC directory. It’s also on the
CompuServe BDELPHI32 forum.
Unzip this into your Delphi 2 LIB
directory and re-compile your
application. This should fix things.

If you are a source junkie, this
replacement version of the System
unit changes the _ResetFile
routine in Delphi 2’s SOURCE\
RTL\SYS\OPENFILE.ASM file as
shown, with my comments, in
Listing 1 (you could verify this with
Turbo Debugger, or as I did with
Delphi’s undocumented CPU view
described in Issue 13’s Delphi
Clinic). This unit also changes quite
a lot of GETMEM.INC to fix some
internal memory leaks.

System Modal Forms

QHow can I set a form up so
that the user is forced to

complete the bits of it that I want
them to before doing anything else.

This includes preventing them
switching to other applications, so
ShowModal is not sufficient. I want
something like TForm.ShowSystem-
Modal, but of course that doesn’t
exist.

ATForm.ShowModal causes a
form to be application mo-

dal. You want the form to be sys-
tem modal. There is a Windows
API, that can be used in 16-bit
Delphi programs, which turns a
normal form into a system modal
form. If you call SetSysModalWin-
dow(Handle) in a form’s OnCreate
event handler, it will be a system
modal form. Being system modal
means the form can’t be moved,
minimised or maximised so it
would be advisable to set the
form’s BorderIcons property ac-
cordingly or set the BorderStyle
property to bsDialog.

If you wish to be able to toggle a
form between being system modal
and modeless then you need to
record the return value from
SetSysModalWindow, as this will need
to be used when you go back to
being modeless. A sample project
MODAL.DPR on the disk shows this
use of the API and also caters for
changing the form’s border style. A
checkbox on the form toggles
between system modality and

non-modality. The important code
is in Listing 2.

System Error Message

QI have discovered a routine
SysErrorMessage in the SysU-

tils run-time library unit. This is
very convenient for getting a tex-
tual description of an error as re-
ported by the GetLastError API, but
has a limitation. If you use
CreateProcess to run a file [See the
next Clinic entry for details on how
to do this. Editor] that is not an
executable file (say \DELPHI\
README.TXT), the API returns

procedure TForm1.chkModalClick(Sender: TObject);
const
 OldModalWnd: THandle = 0;
begin
 if chkModal.Checked then begin
 if chkUpdateUI.Checked then
 BorderStyle := bsDialog;
 OldModalWnd := SetSysModalWindow(Handle);
 end else begin
 if chkUpdateUI.Checked then
 BorderStyle := bsSizeable;
 SetSysModalWindow(OldModalWnd);
 end
end;

➤ Listing 2

Before:
//if FileMode 2 then
// FileMode := 2
 mov cl, FileMode
 cmp cl, 2
 jbe @@skip
 mov cl, 2
@skip:

After:
//if FileMode and 3 = 3 then
// FileMode := 2
//in other words, check this is
//not the illegal file mode
//combination
// fmOpenWrite + fmOpenReadWrite
 mov cl, FileMode
 and cl, 3
 cmp cl, 2
 jbe @@skip
 mov cl, 2
@skip:

➤ Listing 1

December 1996 The Delphi Magazine 51

False. GetLastError returns an
error number of 193 (ERROR_
BAD_EXE_FORMAT) and SysError-
Message gives a string of %1 is not a
valid Win32 application. Clearly the
file name should be used as a place
holder but SysErrorMessage doesn’t
know that. Can you fix it?

AWin32 is much more pleas-
ant in the way it gives error

information. Many APIs return a
Boolean, where False means a prob-
lem has occurred and GetLastError
tells us the error number. The
SysErrorMessage uses the Format-
Message API to produce a textual
description of the error. Having
looked at the source for SysError-
Message I have modified it to take an
extra parameter that can be a file
name, which will be substituted for
the %1 if it appears. Listing 3 shows
the new routine (located in the
RUNWAITU.PAS unit on this
month’s disk) along with a sample
call to it. This routine is used in the
next Clinic entry for the purposes
of giving a descriptive text string to
an exception object.

Waiting For Termination

QHow do I tell if a program I
launch from my Delphi 2 app

has terminated? The old 16-bit ap-
proach of calling GetModuleUsage
doesn’t work in Win32.

AFortunately the Windows
API has been improved here.

It is easy to wait until a process has
completed – provided you have its
process handle. If you still use
WinExec or ShellExecute to launch
programs (as a hang-over from
Delphi 1) then you’re not going to
get very far. You need to use the
Win32 APIs CreateProcess or
ShellExecuteEx instead. Listing 4
shows two routines that can be
used to launch an application, one
for each API. Both functions return
the process handle, or raise an
exception on failure. Two versions
of another routine are shown in
Listing 5 that wait until the speci-
fied process has finished executing
using the WaitForSingleObject API.

This API is nice and simple but
the calling program hangs whilst it

type
 EExecAppError = class(Exception);
...
function ExecApp(AppName, Params: String): THandle;
var SI: TStartupInfo;
 PI: TProcessInformation;
begin
 FillChar(SI, SizeOf(SI), 0);
 with SI do begin
 cb := SizeOf(TStartupInfo);
 dwFlags := StartF_UseShowWindow;
 wShowWindow := sw_ShowNormal;
 end;
 if not CreateProcess(nil, PChar(AppName + ’ ’ + Params),
 nil, nil, False, 0, nil, nil, SI, PI) then
 raise EExecAppError.Create(SysErrorMessageParam(GetLastError, AppName));
 Result := PI.HProcess;
end;
function ExecApp2(AppName, Params: String): THandle;
var SEI: TShellExecuteInfo;
begin
 FillChar(SEI, SizeOf(SEI), 0);
 with SEI do begin
 cbSize := SizeOf(SEI);
 fMask := see_Mask_NoCloseProcess;
 Wnd := Application.Handle;
 lpFile := PChar(AppName);
 lpParameters := PChar(Params);
 nShow := sw_ShowNormal;
 if not ShellExecuteEx(@SEI) then
 {this API requires the ShellAPI unit }
 raise EExecAppError.Create(
 SysErrorMessageParam(GetLastError, AppName));
 Result := SEI.HProcess;
 end;
end;

➤ Listing 4

function SysErrorMessageParam(ErrorCode: Integer; Param: String): String;
var
 Len: Integer;
 Buffer: array[0..255] of Char;
 ArgArray: array[1..1] of PChar;
begin
 ArgArray[1] := PChar(Param);
 Len := FormatMessage(Format_Message_From_System or
 Format_Message_Argument_Array, nil, ErrorCode, 0, Buffer,
 SizeOf(Buffer), @ArgArray);
 while (Len > 0) and (Buffer[Len - 1] in [#0..#32, ’.’]) do Dec(Len);
 SetString(Result, Buffer, Len);
end;
...
ShowMessage(SysErrorMessageParam(GetLastError, FileName);

➤ Listing 3

type
 TWaitThread = class(TThread)
 private
 FProcess: THandle;
 public
 constructor Create(HProcess: THandle);
 procedure Execute; override;
 end;
...
constructor TWaitThread.Create(HProcess: THandle);
begin
 FProcess := HProcess;
 inherited Create(False)
end;
procedure TWaitThread.Execute;
begin
 WaitForSingleObject(FProcess, Infinite)
end;
procedure WaitForApp(HProcess: THandle; Event: TNotifyEvent);
begin
 with TWaitThread.Create(HProcess) do begin
 FreeOnTerminate := True;
 OnTerminate := Event
 end;
end;
procedure WaitForApp2(HProcess: THandle);
begin
 while WaitForSingleObject(HProcess, 100) = Wait_TimeOut do begin
 Application.ProcessMessages;
 if Application.Terminated then
 Break
 end
end;

➤ Listing 5

52 The Delphi Magazine Issue 16

is waiting. Therefore, you either
have to repetitively wait for short
periods, calling the usual Process-
Messages in between, or use a
thread to do the waiting. Notice
that the thread-based routine takes
a method as a parameter, suitable
for use as an OnTerminate event
handler for the thread. These rou-
tines are supplied in a unit on the
disk called RUNWAITU.PAS, and a
sample project RUNAPP.DPR
makes use of them all. The impor-
tant code from the form unit of the
project is shown in Listing 6.

Single Instance Only

QHow can I ensure that my
program is restricted to a

single instance? In other words, if a
user tries to invoke my app a
second time, it should not start a
second copy. Delphi 1 allowed me
to simply check HPrevInst against
zero. Delphi 2 has removed this
variable.

AThere’s usually two sides to
this question. Firstly, how to

restrict the application to being
single instance and secondly how
to switch focus back to the first
instance when a new instance is
invoked. In 16-bit programming,
HPrevInst, the instance handle of
the previous instance, makes the
first step easy. In Win32, all appli-
cations have their own address
space and get loaded (typically) at
the same address. Since an
instance handle is really just the
address of the application’s data
segment all instance handles can
be the same value – in other words
not very useful. All this means
that we have to find our own
mechanism to achieve the goal.

Some people elect to use atoms,
which are system-supplied num-
bers related to a supplied string, or
atom name. They will create a
global atom (GlobalAddAtom) upon
application start-up (using Appli-
cation.ExeName as the atom name)
and delete it on exit (Global-
DeleteAtom). Before creating the
atom, they will check if it exists
with GlobalFindAtom, whereupon
they know if a previous instance is
running. It’s worth knowing that

the global atom table can only hold
37 atoms. Every Delphi 2 applica-
tion makes use of one atom and all
Delphi 1 apps use two each.

An alternative approach, as used
here, is with a semaphore. These
Win32 devices are often used to
limit the number of threads using a
resource. We will cheat a little by
not using the semaphore API per se,
but just find out if a semaphore
already exists.

That deals with detecting the
previous instance, so now we need
to switch focus to it. The approach
used in 16-bit was covered in Issue
5 in my article Please call later...
Callbacks in Windows and the Bor-
land Database Engine (Part 2). In
order to switch back, you had to
locate a window in the original in-
stance, bring it to the front of all
other windows and restore it if it
was minimised. In the article the
window was located using EnumWin-
dows in conjunction with a few little
tests. As an alternative, the solu-
tion presented here involves using
the GetWindow API to iterate through
the windows on the desktop.

Listing 7 shows the initializa-
tion section of a unit (ONE-
INST.PAS) that can be added to any
project (File | Add to Project...)
or simply added to the uses clause
of a unit in a project. The code has

conditional compilation directives
to ensure successful operation in
Delphi 1 and 2. Having used the unit
somewhere in your project, the
program will only allow single
instances, as the initialization
section of the unit executes all the
code described above. There is a
trivial demo project supplied on
the disk that uses the OneInst unit,
called INST_EG.DPR.

Thanks to Paul Broadfield for
fixing the first version of my sema-
phore call and to Roy Nelson for
the approach to switch back to the
original instance.

Thunking Error

QIn Issue 13 you followed up
your Issue 12 article on call-

ing 16-bit DLLs from 32-bit by sup-
plying a routine in the Tips & Tricks
column to make calling 16-bit code
a very simple affair. This little
beauty served me very well until I
tried to use it with a routine that
took a pass by reference parame-
ter. Even though the 16-bit code
would modify the parameter, the
32-bit variable would still be in its
pre-call state, unmodified. I had a
good step through your code
(which has taught me a good few
useful bits – thanks) and realised
that the Call16BitRoutine function

procedure TForm1.ThreadTerminate(Sender: TObject);
begin
 Button1.Enabled := True
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 { This is the one that uses a thread. The button normally gets
 re-enabled in the thread’s OnTerminate event handler. If there’s
 a problem, we’ll do it here }
 Button1.Enabled := False;
 try
 WaitForApp(ExecApp(Edit1.Text, Edit2.Text), ThreadTerminate);
 except
 Button1.Enabled := True;
 raise
 end
end;

procedure TForm1.Button2Click(Sender: TObject);
begin
 { This one doesn’t use a thread, so we’ll }
 { make sure we re-enable the button here }
 Button2.Enabled := False;
 try
 WaitForApp2(ExecApp2(Edit1.Text, Edit2.Text));
 finally
 Button2.Enabled := True
 end
end;

➤ Listing 6

54 The Delphi Magazine Issue 16

throws my modified value away be-
fore we have chance to do anything
useful with it. It seems that the rou-
tine is forgetting to do something.

Apart from that I must thank you
for a very nice chunk of code which
has saved me weeks. After playing
with the Microsoft Thunk Com-
piler, I am very very glad your arti-
cle reared its head when it did.
[These are genuine comments,
Brian hasn’t made them up. Editor].

AYou’re right. The routine
copies the 32-bit parameters

into blocks of memory accessible
by 16-bit code, calls the 16-bit code
and then doesnt do anything with
them. Any parameters that might
have been modified (var, pointer
and structured const parameters
have a potential of being altered)
should be copied back to the 32-bit
variables.

A replacement set of files from
the article appears on this month’s
disk. Thanks are due to Russ Gar-
ner who spotted the problem and
suggested a fix.

procedure EnsureSingleInstance;
var
 Wnd: HWnd;
 WndClass, WndText: array[0..255] of char;
begin
 {$ifdef Win32}
 { Try and create a semaphore. If we succeed, then check if the semaphore
 was already present. If it was then a previous instance is floating
 around. Note the OS will free the returned semaphore handle when the
 app shuts so we can forget about it }
 if (CreateSemaphore(nil, 0, 1,
 PChar(ExtractFileName(Application.ExeName))) <> 0) and
 (GetLastError = Error_Already_Exists) then
 {$else}
 if HPrevInst <> 0 then
 {$endif}
 begin
 Wnd := GetWindow(Application.Handle, gw_HWndFirst);
 while Wnd <> 0 do begin
 { Look for the other TApplication window out there }
 if Wnd <> Application.Handle then begin
 { Check it’s definitely got the same class and caption }
 GetClassName(Wnd, WndClass, Pred(SizeOf(WndClass)));
 GetWindowText(Wnd, WndText, Succ(Length(Application.Title)));
 if (StrPas(WndClass) = Application.ClassName) and
 (StrPas(WndText) = Application.Title) then begin
 { This technique is used by the VCL: post a message then bring
 the window to the top, before the message gets processed }
 PostMessage(Wnd, wm_SysCommand, sc_Restore, 0);
 {$ifdef Win32}
 SetForegroundWindow(Wnd);
 {$else}
 BringWindowToTop(Wnd);
 {$endif}
 Halt
 end
 end;
 Wnd := GetWindow(Wnd, gw_HWndNext)
 end
 end
end;
initialization
 EnsureSingleInstance
end.

➤ Listing 7

56 The Delphi Magazine Issue 16

	FileMode Failure
	System Modal Forms
	System Error Message
	Waiting For Termination
	Single Instance Only
	Thunking Error

